Identities relating the Jordan product and the associator in the free nonassociative algebra
نویسندگان
چکیده
We determine the identities of degree ≤ 6 satisfied by the symmetric (Jordan) product a◦ b = ab+ ba and the associator [a, b, c] = (ab)c−a(bc) in every nonassociative algebra. In addition to the commutative identity a◦b = b◦a we obtain one new identity in degree 4 and another new identity in degree 5. We demonstrate the existence of further new identities in degree 6. These identities define a variety of binary-ternary algebras which generalizes the variety of Jordan algebras in the same way that Akivis algebras generalize Lie algebras.
منابع مشابه
Jordan triple disystems
We take an algorithmic and computational approach to a basic problem in abstract algebra: determining the correct generalization to dialgebras of a given variety of nonassociative algebras. We give a simplified statement of the KP algorithm introduced by Kolesnikov and Pozhidaev for extending polynomial identities for algebras to corresponding identities for dialgebras. We apply the KP algorith...
متن کاملIdentities for the Associator in Alternative Algebras
The associator is an alternating trilinear product for any alternative algebra. We study this trilinear product in three related algebras: the associator in a free alternative algebra, the associator in the Cayley algebra, and the ternary cross product on four-dimensional space. This last example is isomorphic to the ternary subalgebra of the Cayley algebra which is spanned by the non-quaternio...
متن کاملPolynomial Identities for Tangent Algebras of Monoassociative Loops
We introduce degree n Sabinin algebras, which are defined by the polynomial identities up to degree n in a Sabinin algebra. Degree 4 Sabinin algebras can be characterized by the polynomial identities satisfied by the commutator, associator and two quaternators in the free nonassociative algebra. We consider these operations in a free power associative algebra and show that one of the quaternato...
متن کاملDimension Formulas for the Free Nonassociative Algebra
The free nonassociative algebra has two subspaces which are closed under both the commutator and the associator: the Akivis elements and the primitive elements. Every Akivis element is primitive, but there are primitive elements which are not Akivis. Using a theorem of Shestakov, we give a recursive formula for the dimension of the Akivis elements. Using a theorem of Shestakov and Umirbaev, we ...
متن کاملOn strongly Jordan zero-product preserving maps
In this paper, we give a characterization of strongly Jordan zero-product preserving maps on normed algebras as a generalization of Jordan zero-product preserving maps. In this direction, we give some illustrative examples to show that the notions of strongly zero-product preserving maps and strongly Jordan zero-product preserving maps are completely different. Also, we prove that the direct p...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2004